
Introduction to Analysis of Algorithms 601

Notice the similarities and differences between Program 9-7 and Program 9-4. The code in
Program 9-7 that sorts vectors is almost identical to the code in Program 9-4 that sorts
arrays. The differences lie in some details of initialization and argument passing.

First, notice that in Program 9-4 the array data is provided in an initialization list when the
array is created, but in Program 9-7 the data to be stored in the vector is input by the user.
This is done because vectors do not accept initialization lists. Second, notice that in Pro-
gram 9-7 the vector is passed by reference to the sortVector function. This is necessary
because, unlike arrays, vectors are passed by value unless the programmer uses a reference
variable as a parameter. Finally, notice that in Program 9-7 it is not necessary to pass the
size of the vector to the functions that work with it. This is because vectors have the size
member function to return the number of elements in the vector.

9.6 Introduction to Analysis of Algorithms

CONCEPT: We can estimate the efficiency of an algorithm by counting the number of 
steps it requires to solve a problem.

An algorithm is a mechanical step-by-step procedure for solving a problem and is the basic
strategy used in designing a program. There is often more than one algorithm that can be
used to solve a given problem. For example, we saw earlier in this chapter that the problem
of searching a sorted array can be solved by two different methods: sequential search and
binary search. 

How can we decide which of two algorithms for solving a problem is better? To answer
this question, we need to establish criteria for judging the “goodness” or efficiency of an
algorithm. The two criteria most often used are space and time. The space criterion refers to
the amount of memory the algorithm requires to solve the problem, while the time criterion
refers to the length of execution time. In this chapter, we will use the time criterion to
evaluate the efficiency of algorithms. 

One possibility for comparing two algorithms is to code them and then time the execution
of the resulting C++ programs. This experimental approach can yield useful information,
but it has the following shortcomings: 

• It measures the efficiency of programs rather than algorithms. 
• The results obtained depend on the programming language used to code the algorithms,

and on the quality of the compiler used to generate machine code. The programs may run
faster or slower if they are coded in a different language, or compiled by a different
compiler. 

Program Output With Example Input Shown in Bold
Please enter 6 integers separated by spaces.
9 4 8 6 3 1[Enter]

The unsorted values entered are:
9 4 8 6 3 1
The sorted values are:
1 3 4 6 8 9

Program 9-7   (continued)

Victoria Chávez뇠


Victoria Chávez뇠




602 Chapter 9 Searching, Sorting, and Algorithm Analysis

• The results obtained depend on how the operating system executes programs, and on
the nature of the hardware on which the programs are executing. The execution
times may be different if we run the programs on a different computer and a different
operating system. 

• The results obtained apply only to those inputs that were part of the execution runs
and may not be representative of the performance of the algorithms using a different
set of inputs. 

A better approach is to count the number of basic steps an algorithm requires to process an
input of a given size. To make sense of this approach, we need more precise definitions of
what we mean by computational problem, problem input, input size, and basic step. 

Computational Problems and Basic Steps 
A computational problem is a problem to be solved using an algorithm. Such a problem
is a collection of instances, with each instance specified by input data given in some
prescribed format. For example, if the problem P is to sort an array of integers, then an
instance of P is just a specific integer array to be sorted. The size of an instance refers to the
amount of memory needed to hold the input data. The input size is usually given as a number
that allows us to infer the total number of bits occupied by the input data. If the number of
bits occupied by each entry of the array is fixed, say at 64 bits, then the length of the array
is a good measure of input size. In contrast, the length of the array is not a good measure
of input size if the size of array elements can vary and there is no fixed upper bound on the
size of these elements. 

A step executed by an algorithm is a basic step (also called a basic operation) if the algo-
rithm can execute the step in time bounded by a constant regardless of the size of the input.
In sorting an array of integers, the step 

Swap the elements in positions k and k+1 

is basic because the time required to swap two array elements remains constant even if the
length of the array increases. In contrast, a step such as 

Find the largest element of the array 

is not basic because the time required to complete the step depends on the length of the
array. Intuitively, a basic step is one that could conceivably be built into the hardware of
some physical computer. 

The definition of a basic step does not specify the size of the constant that bounds the time
required to execute the step. Ignoring the exact value of these constants reflects the reality
that the same operation may be executed with different speeds on different hardware, and
that an operation that can be executed with one hardware instruction on one computer
may require several hardware instructions on another computer. A consequence of this
definition is that we can count any constant number of basic steps as one basic step. For
example, an algorithm that executes 5n basic steps can accurately be described as execut-
ing n basic steps. 

It is important to realize that ordinary arithmetic and logic operations such as addition and
comparison are not basic unless a constant bound is put on the size of the numbers being



Introduction to Analysis of Algorithms 603

added or compared. The size of the bound does not matter as long as the bound is con-
stant. It may be 32, 64, 128, 1024 bits, or even larger, and these operations will still be
basic. In the following discussion, we assume that all the numbers used in our algorithms
as inputs, outputs, or computed intermediate results are bounded in size. This allows us to
consider operations on them as basic. 

It only makes sense to describe an algorithm after we have described the problem the algo-
rithm is supposed to solve. A computational problem is described by stating what the input
will look like, how big it is, and what output the algorithm solving the problem is sup-
posed to produce. These must be described clearly, so there is no ambiguity, and generally,
so the algorithm can work with any data set that fits the description. 

Let’s look at an example. Suppose the problem P is to sum all the integer values in a one-
dimensional array. We could describe the problem by saying that the input data is an array
of n integer values and that the output to be produced is the integer sum of these values.
Formally, this is written as follows:

INPUT: an integer array a[] of size n
SIZE OF INPUT: The number n of array entries
OUTPUT: An integer sum representing the sum total of the values stored in the array

Notice that the word INPUT used this way does not mean a set of data entered by the user,
but rather means the form of the data used by the algorithm solving the problem. Likewise,
the word OUTPUT used this way does not mean something displayed on the computer
screen by a program. It means the result created by the algorithm that solves the problem.
Because we have assumed all the array entries are of some fixed size, such as 32 or 64 bits,
the number n of elements in the array is a good measure of input size. 

Once a computational problem has been described, there can be many different algorithms
designed to solve it. Some, of course, are better than others, as we will soon see. Here is one
possible algorithm for solving the computational problem just described. Notice that it is
expressed in pseudocode, rather than in C++ or any other particular programming language.

Algorithm 1: 
1: sum = 0
2: k = 0 //array index 
3: While k < n do 
4: sum = sum + a[k]
5: k = k + 1
6: End While 

Complexity of Algorithms 
We can measure the complexity of an algorithm that solves a computational problem by
determining the number of basic steps it requires for an input of size n. Let’s count the
number of steps required by Algorithm 1. The algorithm consists of two statements on
lines 1 and 2 that are each executed once and two statements inside a loop on lines 4 and 5
that will execute once each time the loop iterates. Recall that because the statements on
lines 1 and 2 perform basic operations they can be grouped together and counted as one
basic operation. Let’s call this operation A. Also, because both statements in the loop execute
in constant time, independently of the size of n, they are also basic operations. Since the



604 Chapter 9 Searching, Sorting, and Algorithm Analysis

loop body contains only basic operations, the amount of time the algorithm takes to execute
a single iteration of the loop is also constant, and not dependent on the size of n. This allows
us to count each loop iteration as a single basic operation. Let’s call this operation B.

Operation A executes only one time, regardless of how big n is. Operation B executes
once each time the loop iterates. Because the loop iterates n times, operation B is executed
n times. Thus, the total number of operations performed is 1 +  n. When n =  10, for exam-
ple, 11 operations are performed. When n =  1000, 1001 operations are performed. When
n =  10,000 the number of operations performed is 10,001. Notice that as n becomes
large, the 1 becomes insignificant and the number of operations performed is approxi-
mately n. We therefore say that the algorithm requires execution time proportional to n to
process an input set of size n. 

There is another way we could look at Algorithm 1 and determine how many operations it
requires. The crucial operation in summing the values in an array is the addition of each
value to the variable accumulating the sum.  This occurs in line 4, and there are as many
additions of array values as there are loop iterations.

Thus, we could get the same result by just counting additions of array elements. It turns
out that for most algorithms, it is sufficient to identify and count only one or two basic
operations that are in some way crucial to the problem being solved. For example, in many
array searching and sorting algorithms, it is sufficient to just count the number of compar-
isons between array elements. 

The array-summing algorithm just considered is particularly simple to analyze because it
performs the same amount of work for all input sets of a given size.

This is not the case with all algorithms. Consider the linear search algorithm introduced
earlier in this chapter. It searches through an array of values, looking for one that matches
a search key. Let’s call the key X. The input to the algorithm is the array of n values and the
key value X. The output of the algorithm is the subscript of the array location where the
value was located or, if it is not found, the determination that the loop control variable has
become larger than the subscript of the last array element. Formally, the problem can be
stated like this:

INPUT: An integer array a[ ] of size n, and an integer X
SIZE OF INPUT: The number n of array entries 
OUTPUT: An integer k in the range 0 ! k ≤ n – 1 such that a[k] = X, or k = n

Algorithm 2, shown here, uses the linear search algorithm to solve the problem.

Algorithm 2: 
1: k = 0
2: While k < n and a[k] ≠ X do
3:    k = k + 1
4: End While 

This algorithm starts at one end and searches sequentially through the array. The algo-
rithm stops as soon as it encounters X, but will search the entire array if X is not in the
array. The algorithm may stop after making only one comparison (X is found in the first
entry examined), or it may not stop until it has made n comparisons (X is found in the last
place examined or is not in the array). In fact, the algorithm may perform m comparisons



Introduction to Analysis of Algorithms 605

where m is any value from 1 to n. In cases where an algorithm may perform different
amounts of work for different inputs of the same size, it is common to measure the
efficiency of the algorithm by the work done on an input of size n that requires the most
work. This is called measuring the algorithm by its worst-case complexity function. 

Worst Case Complexity of Algorithms 
The worst-case complexity function f(n) of an algorithm is the number of steps it performs
on an input of size n that requires the most work. It gives an indication of the longest time
the algorithm will ever take to solve an instance of size n, and is a good measure of
efficiency to use when we are looking for a performance guarantee. 

Let’s determine the worst-case complexity of binary search, which was introduced earlier
in this chapter. This algorithm is used to locate an item X in an array sorted in ascending
order. The worst case occurs when X is not found in the array. In this case, as we will see,
the algorithm performs L + 1 steps, where L is the number of loop iterations.

Here is the binary search algorithm to search an array of n elements.

Algorithm 3: 
 1: first = 0
 2: last = n - 1   // n - 1 is the subscript of the last element.
 3: found = false
 4: position = -1
 5: While found is not true and first <= last
 6:    middle = (first + last) / 2
 7:    If a[middle] = X
 8:       found = true
 9:       position = middle
10:    Else if a[middle] > X 
11:       last = middle - 1
12:    Else
13:       first = middle + 1
14:    End If
15: End While
16: // When the loop terminates, position holds the subscript
17: // where the value matching X was found, or holds –1 if
18: // the value was not found.

The algorithm consists of some initialization of variables followed by a loop. The initializa-
tion requires constant time, and can therefore be considered to be one basic operation.
Likewise, each iteration of the loop is a basic step because increasing the number of entries in
the array does not increase the amount of time required by a single iteration of the loop. This
shows that the number of steps required by binary search is L + 1. Now L is approximately
equal to the integer part of log2n, the logarithm of n to the base 2. To see this, notice that
the size of the array to be searched is initially n, and each iteration reduces the size of the
remaining portion of the array by approximately one half. Because each loop iteration
performs at most two comparisons, binary search performs a total of 2 log2n comparisons.
We can summarize our findings as follows: 

In the worst case, binary search requires time proportional to log2n.



606 Chapter 9 Searching, Sorting, and Algorithm Analysis

Let’s look at one more algorithm to determine its worst case complexity. The computa-
tional problem to be solved is to arrange a set of n integers into ascending order.

INPUT: An array a[ ] of n integers
SIZE OF INPUT: The number n of array entries
OUTPUT: The array a[ ] rearranged so that a[0] ! a[1] ! . . . ! a[n "1]

The algorithm we will use is a modification of the selection sort algorithm introduced ear-
lier in this chapter. This version scans for the largest element (instead of the smallest) and
moves it to the end in each pass.

Algorithm 4:
1:  For (k = n-1; k ≥ 1; k --)
2:     // a[0..k] is what remains to be sorted
3:     Determine position p of largest entry in a[0..k]
4:        Swap a[p] with a[k]
5:  End For 

To analyze the complexity of this algorithm, let’s begin by determining the number of array
entry comparisons it makes when sorting an array of n entries. These comparisons occur in
step 3. Step 3 is clearly not a basic step, as it requires time proportional to k, and k varies
with each iteration of the loop. To better see what is going on, let’s restate step 3 using
operations that are basic.

INPUT: array a[0..k] of k + 1 entries 
SIZE OF INPUT: number k + 1 of array entries 
3.0:  p = 0 //Position of largest value in unsorted part of the array
3.1:  For (m = 1; m ≤ k; m ++)
3.2:     If a[m] > a[p] Then
3.3:       p = m 
3.4:    End if 
3.5:  End For 

We can see that the loop in line 3.1 through 3.5 iterates k times and on line 3.2 makes one
comparison each time it iterates. Therefore this algorithm requires k comparisons between
array entries.

Now returning to the main sorting algorithm, we observe that there will be n "1 iterations
of the loop that starts at line 1 and ends at line 5, one iteration for each value of k in the
range n "1 to 1. On the first iteration, k equals n "1, so step 3, as we learned from the
analysis of lines 3.0 through 3.5, performs n "1 comparisons between array elements. On
the second iteration, k equals n "2, so step 3 performs n "2 comparisons. This continues
until, on the final iteration, k equals 1, and step 3 performs 1 comparison. Here is what it
looks like:

k = n "1: step 3 performs n "1 comparisons 
k = n "2: step 3 performs n "2 comparisons 
. 
. 
k = 1: step 3 performs 1 comparison 

Generalizing, we can thus say that for every value of k from n "1 to 1, on the kth itera-
tion, the step on line 3 will perform k comparisons. 



Introduction to Analysis of Algorithms 607

Thus the total number of comparisons performed by this simple sorting algorithm is given
by the expression 

1 + 2 + 3 + . . . + (n "1) =  (n "1)n/2 

For large n, this expression is very close to n2 / 2. So we say that: 

In the worst case, selection sort requires time proportional to n2. 

Average Case Complexity 
The worst-case complexity does not, however, give a good indication of how an algorithm
will perform in practical situations where inputs that yield worst case performance are
rare. Often we are more interested in determining the complexity of the typical, or average
case. The average-case complexity function can be used when we know the relative fre-
quencies with which different inputs are likely to occur in practice. The average case
complexity function uses these frequencies to form a weighted average of the number of
steps performed on each input. Unfortunately, although it yields a good measure of the
expected performance of an algorithm, accurate estimates of input frequencies may be
difficult to obtain. 

Asymptotic Complexity and the Big O Notation 
We can compare two algorithms F and G for solving a problem by comparing their
complexity functions. More specifically, if f(n) and g(n) are the complexity functions for
the two algorithms, we can compare the algorithms against each other by looking at
what happens to the ratio f(n)/g(n) when n gets large. This is easiest to understand if
this ratio tends to some limit. Let us consider some specific examples. Throughout, we
assume that f(n) # 1 and g(n) # 1 for all (n) # 1. 

• f(n) =  3n2+ 5n and g(n) =  n2. In this case

 → 3 as n → ∞

That is, the value of f(n)/g(n) gets closer and closer to 3 as n gets large. What this means is
that for very large input sizes F performs three times as many basic operations as G.
However, because the two algorithms differ in performance only by a constant factor, we
consider them to be equivalent in efficiency.

• f(n) =  3n2+ 5n and g(n) =  100n. In this case 

 → ∞ as n → ∞

Here, the ratio f(n)/g(n) gets larger and larger as n gets large. This means F does a lot more
work than G on large input sizes. This makes G the better algorithm for large inputs. 

f n( )
g n( )
----------- 3n2 5n+

n2
--------------------- 3 5

n
---+= =

f n( )
g n( )
----------- 3n2 5n+

100n
--------------------- 3n

100
--------- 5

100
---------+= =



608 Chapter 9 Searching, Sorting, and Algorithm Analysis

• f(n) = 3n2+ 5n and g(n) = n3. In this case

 → 0 as n → ∞

This means that for large inputs the algorithm G is doing a lot more work than F, making
F the more efficient algorithm. 

In general, we can compare two complexity functions f(n) and g(n) by looking at what
happens to f(n)/g(n) as n gets large. Although thinking in terms of a limit of this ratio is
helpful in comparing the two algorithms, we cannot assume that such a limit will always
exist. It turns out that a limit does not have to exist for us to gain useful information from
this ratio. We can usefully compare the two complexity functions if we can find a positive
constant K such that 

 ! K for all n # 1

If this can be done, it means that the algorithm F is no worse than K times G for large
problems. In this case, we say that f(n) is in O(g(n)), pronounced “f is in Big O of g.” The
condition that defines f(n) is in O(g(n)) is often written like this

f(n) ! Kg(n) whenever n # 1.

Showing that f(n) is in O(g(n)) is usually straightforward. You look at the ratio f(n)/g(n)
and try to find a positive constant K that makes f(n)/g(n) ! K  for all n # 1. For example,
to show that 3n2 + 5n is in O(n2 ), look at the ratio 

and notice that 5/n will be at most 5 for all n # 1. So 3 + 5/n  ! 8.  Therefore for K = 8,
f(n) / g(n) ! K .

To show that f(n) is not in O(g(n)), you have to show that there is no way to find a positive
K that will satisfy f(n) / g(n) ! K for all n # 1. For example, the function 3n2 + 5n is not in
O(n) because there is no constant K that satisfies

 = 3n + 5 ! K for all n # 1.

Although defined for functions, the “Big O” notation and terminology is also used to char-
acterize algorithms and computational problems. Thus, we say that an algorithm F is in
O(g(n)) for some function g(n) if the worst case complexity function f(n) of F is in Big O of
g(n). Accordingly, sequential search of an array is in O(n) whereas binary search is in O(log2 n). 

Similarly, a computational problem is said to be in O(g(n)) if there exists an algorithm for
the problem whose worst case complexity function is in O(g(n)). Thus, the problem of
sorting an array is in O(n2), whereas the problem of searching a sorted array is in O(log2 n). 

If g(n) is a function, O(g(n)) can be regarded as a family of functions that grow no faster
than g(n). These families are called complexity classes, and a few of them are important
enough to merit specific names. We list them here in order of their rate of growth: 

f n( )
g n( )
----------- 3n2 5n+

n3
--------------------- 3

n2
----- 5

n2
-----+= =

f n( )
g n( )
-----------

3n2 5n+

n2
--------------------- 3 5

n
---+=

3n2 5n+
n

---------------------



Case Studies 609

1. O(1): A function f(n) is in this class if there is a constant K $ 0 such that f(n) ! K for
all n # 1. An algorithm whose worst case complexity function is in this class is said
to run in constant time. 

2. O(log2 n): Algorithms in this class run in logarithmic time. Because log n grows much
slower than n, a huge increase in the size of the problem results in only a small
increase in the running time of the algorithm. This complexity is characteristic of
search problems that eliminate half of the search space with each basic operation.
The binary search algorithm is in this class.

3. O(n): Algorithms in this class run in linear time. Any increase in the size of the prob-
lem results in a proportionate increase in the running time of the algorithm. This
complexity is characteristic of algorithms like sequential search that make a single
pass, or a constant number of passes, over their input.

4. O(n log2 n): This class is called “n log n” time. An increase in the size of the problem
results in a slight increase in the running time of the algorithm. The average case
complexity of Quicksort, a sorting algorithm you will learn about in Chapter 14, is
in this class.

5. O(n2): This class is called quadratic time. This performance is characteristic of algo-
rithms that make multiple passes over the input data using two nested loops. An
increase in the size of the problem causes a much greater increase in the running time
of the algorithm. The worst case complexity functions of bubble sort, selection sort,
and Quicksort all lie in this class. 

Checkpoint

9.10 What is a basic operation? 

9.11 What is the worst case complexity function of an algorithm? 

9.12 One algorithm needs 10n basic operations to process an input of size n, and another
algorithm needs 25n basic operations to process the same input. Which of the two
algorithms is more efficient? Or are they equally efficient? 

9.13 What does it mean to say that f(n) is in O(g(n))? 

9.14 Show that 100n3 + 50n2 + 75 is in O(20n3) by finding a positive K that satisfies the 
equation (100n3 + 50n2 + 75) / 20n3 ≤ K. 

9.15 Assuming g(n) ≥ 1 for all n ≥ 1, show that every function in O(g(n) + 100) is also in
O(g(n)). 

9.7 Case Studies
The following case studies, which contain applications of material introduced in Chapter 9,
can be found on the student CD.

Demetris Leadership Center—Parts 1 & 2
Chapter 9 included programs illustrating how to search and sort arrays, including arrays
of objects. These two case studies illustrate how to search and sort arrays of structures.
Both studies develop programs for DLC, Inc., a fictional company that publishes books,
DVDs, and audio CDs. DLC’s inventory data, used by both programs, is stored in an array
of structures. 

Creating an Abstract Array Data Type—Part 2
The IntList class, begun as a case study in Chapter 8, is extended to include array search-
ing and sorting capabilities.

Victoria Chávez뇠



